How SD-WAN technology works

Comments · 232 Views

SD-WAN technology supports quality of service (QoS) policy and is what determines where dynamic path selection will steer traffic. SD-WAN policy also determines what level of priority (QoS) is given.

SD-WAN stands for software-defined wide area network (or networking). A WAN is a connection between local area networks (LANs) separated by a substantial distance—anything from a few miles to thousands of miles. The term software-defined implies the WAN is programmatically configured and managed. So, it can be easily adapted quickly to meet changing needs. 

How Does SD-WAN Work?

There are several characteristics that are generally attributed to SD-WANs. Let’s walk through them and learn more about how SD-WAN technology works.

Centralized control
The primary means of control in an SD-WAN is centralized. It often resides in a SaaS application running on a public cloud. Control is decoupled from the hardware to simplify network management and improve the delivery of services. SD-WAN appliances (and virtual appliances) follow operational rules passed down from the central SD-WAN controller. This greatly reduces or eliminates the need to manage gateways and routers on an individual basis.

Multi-connection, multi-transport
SD-WAN gateways support hybrid WAN, which implies that each gateway can have multiple connections using different transports—MPLS, broadband Internet, LTE, etc. A virtual private network (VPN) is typically set up across each WAN connection for security. Consequently, the SD-WAN technology can be an overlay spanning a diverse communications infrastructure.

Dynamic path selection
Another feature of SD-WAN is dynamic path selection—the ability to automatically and selectively route traffic onto one WAN link or another depending on network conditions or traffic characteristics. Packets may be steered onto a particular link because another link is down or not working very well, or to balance network traffic across all available links. SD-WAN technology can also identify packets by application, user, source/destination, etc. and send them down one path or another based on those characteristics.

Policy-based management
SD-WAN technology supports quality of service (QoS) policy and is what determines where dynamic path selection will steer traffic. SD-WAN policy also determines  what level of priority (QoS) is given. Business intentions can be implemented as policies via the central management console. New and updated policies are translated into operational rules and downloaded to all SD-WAN gateways and routers under control.

A policy may be created, for example, to ensure the best performance for VoIP and interactive web conferences by giving their packets transmission priority and routing them onto low-latency paths. Cost savings can be realized by sending file back-ups across a broadband Internet connection. WAN traffic that requires a high level of security can be restricted to private connections (e.g., MPLS) between sites and required to pass through a robust security stack when entering the enterprise.

Service chaining
An additional characteristic of SD-WAN is the ability chain it together with other network services. WAN optimization (acceleration) is often combined with SD-WAN to improve network and application performance. Internet traffic leaving and entering a branch office may be routed across a VPN to a cloud-base security service to strike a balance between performance, security, and cost.

Comments